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Summary

Capacitance fuel gauges have served as the ba-
sis for fuel quantity indicating systems in aircraft for
several decades. However, there have been persistent
reports by the airlines that these gauges often give
faulty indications due to microbial growth and other
contaminants in the fuel tanks. This report describes
the results of a feasibility study of using gamma ray
attenuation as the basis for measuring fuel quantity
in the tanks. Studies with a weak Am2*' 59.5-keV
radiation source indicate that it is possible to contin-
uously monitor the fuel quantity in the tanks to an
accuracy of better than 1 percent. These measure-
ments also indicate that there are easily measurable
differences in the physical properties and resultant
attenuation characteristics of JP-4, JP-5, and Jet A
fuels. The experimental results, along with a sug-
gested source-detector geometrical configuration, are
described.

Introduction

Capacitance fuel gauges have served as the ba-
sis for fuel quantity indicating systems in aircraft for
several decades. These gauges, in the form of concen-
tric cylinders, are mounted vertically at several loca-
tions inside the fuel tanks (ref. 1). The summations
of their indications give the total tank fuel content
at any time. However, there have been persistent
reports (ref. 2) by the airlines that the capacitance
gauges often give faulty indications of tank fuel con-
tents. The problem has been attributed to microbial
growth and/or contaminants in the fuel tanks. The
microbes can occur in storage tanks, delivery lines,
pump trucks, and consequently, in the aircraft fuel
tanks. The microbes attack the capacitance cylin-
der coatings and thus expose the cylinder surfaces
(electrodes) for subsequent corrosion and electrical
noise in the capacitance bridge circuit. They also
corrode the output signal leads. It is thus highly
desirable that a fuel quantity indicating system in-
sensitive to fuel contamination be developed. Such a
system should be highly accurate (better than 1 per-
cent), safe to use and operate, and inexpensive.

An investigation of the feasibility of using gamma
ray attenuation as the basis for measuring the fuel
guantity in aircraft tanks has been conducted. The
results of these studies are described in the following
sections.

Principle of Operation of 2 Nuclear Gauge

The operation of a nuclear gauge is based on the
attenuation of gamma rays passing through matter.
As a result of interaction of gamma rays with the
atoms in the test medium, the number of unaffected

primary photons arriving at the detector is a funec-
tion of the path length in the test medium. For a
uniform medium, it is given by the following expres-
sion (ref. 3):

Ia; = Ioe—lllz (1)
where
Iy number of unaffected primary
photons transmitted through test
medium
I, number of photons incident on test
medium
" linear attenuation coefficient for
incident photons in test medium
z path length in test medium

Clearly, such a gauge will be more sensitive if the
attenuation coefficient () is large for the incident
photons. This dictates the choice of low-energy
(less than 100 keV) photon sources. Two plausible
candidate sources that meet the necessary criteria of
low photon energy, long source half-life, and a well-
resolved photon spectrum are Am?4! (458 years) and
Cd109 (453 days).

The decay schemes (ref. 4) for these two sources
are shown in figures 1 and 2, respectively. It is noted
that the 59.5-keV radiation from the Am24! source
results from a super-allowed electric dipole (E1) tran-
sition in Np?37, whereas the 87.7-keV radiation from
the Cd10? source arises from a weakly allowed electric
octopole (E3) transition in Agl%9. The latter tran-
sition is strongly internally converted and produces
a large, lower energy Ag K X-ray flux. For example,
a 10-mCi Am?*! disc source emits 7.4 x 10% pho-
tons (59.5 keV) per second per steradian, whereas
a 10-mCi Cd'% source emits 2.6 x 107 photons
(22.6 keV) per second per steradian (ref. 5). The
relative intensities of gamma rays and characteristic
X-Rays emitted from these sources are summarized
in table I (ref. 4). Thus, even though the choice of
a Cd199 source will necessitate changing the source
every 3 years or so, Cd109 still appears to be a viable
candidate source by virtue of its large lower energy
photon yield.

Experimental Procedures for Measuring
Attenuation Coefficients

Since the ezact compositions of aviation fuels are
seldom known (refs. 6 and 7), it was not possible
to calculate their attenuation coefficients for Am?24!
and Cd'% gamma rays. It was therefore decided
to determine the attenuation coefficients of selected
types of fuels experimentally.



Attenuation coefficients of several samples of com-
mercial aviation fuels were measured in the narrow
beam geometry illustrated in figure 3. The fuel cells
were made of glass and were fabricated in the form of
3-in. (7.62-cm) diameter flat-ended cylinders of three
different lengths for easy data reduction. The gamma
rays were detected with a 2-in. (5.08-cm) diameter x
2-in. (5.08-cm) thick Nal (TI) crystal coupled to a
high-gain photomultiplier. Figure 4 shows the geo-
metrical details of the source, collimators, fuel cells,
and detector assembly.

Measurements were made with empty fuel cells
and cells filled with the test fluids. To further test
the sensitivity of the system, measurements were also
made with distilled water in the fuel cells. Typical
Am?*1 and Cd!09 spectra are shown in figures 5
and 6.

For the Am?*! source, the single-channel analyzer
(SCA) limits were adjusted to accept the strong 59.5-
keV peak. For the Cdl% source, the SCA limits
were set to accept the weaker 87.7-keV total capture
peak rather than the stronger, but unresolved, lower
energy Ag Ko (22.1 keV) and Ag Kg (25.0 keV)
peaks. .

The nominal radioactive source strengths readily
available for this test were of the order of 10 uCi
(Am?41) and 100 uCi (Cd'9?). They provided good
counting statistics for all test fluids over a period

of 10 minutes. Measurements were made with and .

without the source in each case to subtract the counts
due to cosmic rays and other background sources of
radiation.

The attenuation coefficients were measured for
water, JP-4 fuel, JP-5 fuel, Jet A fuel, regular
leaded automobile gasoline, and unleaded automo-
bile gasoline.

Data Reduction and Results

Counts were recorded for 10 minutes for each
source for the three fuel cells filled with the test flu-
ids. The geometrical details of the configurations in-
corporating test cells G-2, G-3, and G-4 are shown in
figure 4. Typical results are summarized in table II.

As illustrated in figure 4, the photons have to pass
through air, glass fuel cell ends, test fluid, and a
0.079-cm-thick aluminum housing for the Nal (T1)
crystal before arriving at the detector surface, that
is,

ILi=1, (e“ﬂairwair e PelassTglass

% ¢~ PauidTfiuid e—umwm) (2)

The values of u,; and paj at 59.5 keV and 87.7 keV
have been reported by a number of authors (refs. 8
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to 10). With these values, [, can be easily calculated
from equation (2) if the entire path length is made
up of air and aluminum. If an empty glass fuel cell
is introduced in the path of the beam, the drop
in the counting rate provides a direct measure of
Mglass for the incident photons. If the fuel cells
are filled with the test fluids, the changes in the
counting rates will reflect the effects of attenuation
characteristics of the test fluids. The experimental
values of linear attenuation coefficients of the various
test fluids are summarized in table II1. These values
are based on several independent sets of data of the
type summarized in table II.

Since the mass attenuation coefficients! of the me-
dia are of more fundamental value than the linear
attenuation coefficients (ref. 3), it was necessary to
determine the densities of the test fluids. The densi-
ties of all the fluids were measured with a standard
50-ml pycnometer, and these values were used to cal-
culate the mass attenuation coefficients of the test
fluids. These results are also included in table III. It
is interesting to note that there are easily measurable
differences in the attenuation coefficients of various
test fluids.

Subsequent to the measurements of the respective
attenuation coefficients of all the test fluids for the
Am?*! and Cdl% gamma rays, it was finally decided
to test the sensitivity of attenuation of low-energy
photons as the basis for a fuel gauging system aboard
aircraft. The wing tank geometry for a Boeing 737
airplane was selected for the computer model as
representative of all aircraft with positive wing tip
inclination with respect to the horizontal while on
the ground. The computational procedures and the
program developed for calculations for an Am?4l
gamma ray source and Jet A fuel test medium are
described below.

Computational Procedure

The computer program WNGTNK is written in
FORTRAN Version 5 language for the Control Data
CYBER 170 series digital computer system with
network operating system (NOS) 2.3. The program
requires approximately 40000 octal locations of core
storage. A typical case requires less than 4 central
processing unit (CPU) seconds on the CYBER 173.

The wing tank (Boeing 737) modeled by the pro-
gram is illustrated in figure 7. For purposes of model-
ing, each of the 14 compartments in this figure is ap-
proximated by a rectangular box. Any similar wing

1 The mass attenuation coefficients are independent of the
actual density and physical state (gas, liquid, or solid) of the
absorber.



tank can be modeled by this technique by simply ad-
justing the number of compartments and the dimen-
sions of each rectangular box. Figure 8 illustrates the
tank model as viewed from the front of the aircraft
with the fuselage (not shown) to the left. The pro-
gram provides the user with the capability of speci-
fying the height of the bottom of each compartment,
B;, to simulate the bending of the wing associated
with flight conditions. The solid dot (-) in each com-
partment depicts the source location, SL, and the
detectors are assumed to be fixed to the bottom of
each compartment. Table TV summarizes the specific
data used in the modeling of the Boeing 737, where
W;, H;, and D; are the compartment widths, heights,
and depths, respectively.

Once the tank geometry has been defined, the
program steps through fixed percentages of tank fuel
capacity. For each amount of fuel, the fuel level is
computed with the assumption of a level fuel surface.
With the fuel level known, the path length between
each source-detector pair occupied by fuel or air is
determined. From these path lengths, the number of
counts is determined. The baffles between compart-
ments contained in the wing structure are assumed to
absorb radiation, so there is no interference between
adjacent compartments.

Program input consists of 14 numbers, separated
by commas, representing the height, B;, of each
compartment bottom in inches. Program output
includes both tabular and graphic results.

Typical results corresponding to the configuration
of figure 8 are included as table V and are illustrated
in figure 9. These data were acquired with a source
strength of about 30 uCi at each station in a count-
ing interval of 1 second. Obviously, this system has a
fast response time (approximately 1 second) and high
resolution (approximately 1 percent). In this figure,
each line depicts the relationship between counts and
fuel expended for a specific compartment, with the
lines toward the right nearer the wing tip and the
lines toward the left nearer the fuselage. In partic-
ular, note that when the tank is full, the counting
rates are the same in each compartment, since the
path lengths through fuel are all equal. As fuel is ex-
pended, the counting rates change first in those com-
partments near the wing tip. After approximately
35 percent of the fuel has been expended, the com-
partment nearest the tip is empty and shows no fur-
ther change in counting rate. Also note that the
source in compartment 1 is completely immersed in
the fuel until approximately 85 percent of the fuel is
expended and begins to show a change in counting
rate as the fuel is reduced below this level. Figure 9
also shows that significant changes in counts can be

observed in one or more compartments as the fuel
level varies, regardless of the tank contents.

A listing of the computer program used in this
analysis is included as an appendix.

Discussion

For the sake of specificity, we will confine our
discussions to the results for an Am?*! (59.5-keV)
gamma, source. Similar results are expected for a
Cd1%9 (87.7-keV) gamma source.

As seen from the data in table V, the counting
rate is constant at all stations when the tank is full.
A 1-percent reduction in the fuel content in the tank
causes a large increase (about 56.9 percent) in the
counting rate at the wing tip detector (station 14).
A further reduction of 1 percent in the fuel causes
an additional increase (about 26.6 percent) in the
counting rate at the wing tip detector. It also results
in a counting rate increase of about 16.2 percent at
station 13. These counting rate changes are easily
measurable. The same trend continues as more fuel is
consumed. For example, when 10 percent of the fuel
has been consumed, the total cumulative counting
rate increases at stations 14, 13, and 12 are 238.6,
114.6, and 35.9 percent, respectively. At the other
end of the spectrum when the tank is nearly empty,
the counting rates in the outer station detectors have
stabilized, but the counting rates at the stations
near the fuselage are changing fast. For example,
when the tank is only 5 percent full, the counting
rates at stations 1, 2, and 3 are 330.1, 521.0, and
822.6 percent higher than the counting rate for the
full tank. A further reduction of 1 percent in the
fuel causes the counting rates to increase to 392.3,
619.1, and 977.1 percent of the values for the full
tank, respectively. . _

From these data it is apparent that the fuel
quantity gauging system detailed in this report is
capable of detecting changes as low as 1 percent in
the fuel contents at the two extreme limits, that is,
when the tank is almost full and when it is almost
empty. A careful examination of table V illustrates
that a similar degree of sensitivisty exists for all levels
of tank fuel contents.

From the foregoing discussion, it is apparent that
a continuous monitoring of counting rates at all the
detector stations should enable continuous tracking
of airplane fuel tank contents with a high degree of
sensitivity.

Concluding Remarks

It has been demonstrated that a suitably designed
nuclear gauge should enable a continuous monitoring
of the tank fuel contents to an accuracy of better
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than 1 percent. Such accurate information—both
at the point of flight origination when the tanks are
presumably full and at the final destination when the
tanks are almost empty—should prove very useful to
the airlines. It should provide reliable information
about the payload capacity at the beginning of the
flight and safety margin near the end of the flight.
The nuclear gauge is not expected to be susceptible
to the fouling and corrosion problems experienced by
the conventional capacitance gauges, since both the
source and the radiation detector are sealed. Any
algae or microbial growth on the source and detector
windows can be easily removed during scheduled
periodic maintenance checks of the gauging system.

An added advantage of the nuclear gauge is its in-
herent capability to detect water buildup in the tank.
Since water is expected to gravitate toward the fuse-
lage, any reduction in the counting rates at stations 1
through 5 when the tank is at least half full can be
used to infer the quantity of water in the tank. It
is also a self-calibrating system with a high degree
of cross-checking capability. This capability renders
the nuclear gauging system independent of any back-
ground count rate changes with altitude. (In any
case, changes in background count rate at altitudes
less than 10 miles are expected to be minimal in the
SCA window centered at 59.5 keV.)

It should perhaps be noted that despite the large
low-energy photon flux obtainable with a Cd'%
source, an Am?4! source would be more economical,
since it would require no source replacement because
of its long half-life. It would also be comparatively
safer to handle and/or shield because of its lower en-
ergy. As a matter of fact, Am?%*1-based densitome-
ters are currently in use aboard some aircraft. The
licensing requirements for an Am?*1-based fuel quan-
tity measurement system would be no different from
what they are for those aircraft. By an appropriate
choice of the Am?4! source strength, the response
time of the nuclear gauge can be safely arranged to
be less than 1 second.

The effects of temperature on the fuel vol-
ume can be easily taken care of by simultaneous—
but independent—measurements of temperature and
density. These measurements will also enable real-
time computation of fuel mass (as opposed to fuel
volume) at any time in flight or on the ground.

NASA Langley Research Center
Hampton, VA 23665-5225
May 6, 1986
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TABLE I. RELATIVE INTENSITIES OF CHARACTERISTIC
X-RAYS AND GAMMA RAYS EMITTED FROM Am?24!
AND (Cd1% RADIOACTIVE SOURCES

Am?4! source Ca" source

Photon Photon

energy Relative energy Relative

(keV) intensity (keV) intensity
11.80 (Np L;) 2.2 221 (Ag Ka) 255
13.90 (Np Lq) 375 25.0 (Ag Kp) 5.0
17.80 (Np Lg) 51.2
20.80 (Np L+) 13.8 87.7 1.0
26.35 7.0
59.50 100.0

TABLE II. COUNTS PER 10-MINUTE INTERVAL FOR VARIOUS TEST MEDIA
WITH Am?4! AND (4109 SOURCES®

Am?241 source ©d199 source
Test Cell G-2 Cell G-3 Cell G-4 Cell G-2 Cell G-3 Cell G-4
medium Lo =4982cm |Lg=17.522cm (Lo =10.062cm |Ly=4982cm {Ly=7522cm | Ly =10.062 cm
Air (no cell) 75446 49988 35710 43650 30476 23184
Air (empty cell) 54489 36705 25491 35404 24897 18906
JP-4 fuel 27880 13899 7480 21080 12950 9192
JP-5 fuel 26859 13204 7018 20765 12569 9018
Jet A fuel 26816 12918 7229 20322 12431 8802
Leaded gasoline 28732 14462 7981 21110 13105 9233
Unleaded gasoline 28966 14353 8094 20948 13107 9202
Water 22095 9832 5267 18455 10937 8001
Background 1817 1850 1876 5319 5391 5270

3Gee figure 4 for geometrical details of fuel cell and associated shields/collimators.




TABLE III. SUMMARY OF ATTENUATION COEFFICIENTS FOR VARIQUS TEST FLUIDS

Am?*! (59.5 keV) source Cd19%9 (87.7 keV) source
Test fluid
density, p,

Test fluid g/cm3 p, cm ™1 pm cm?/g p, cm~ L Ym, cm?/g
JP-4 fuel 0.7546 0.143 4 0.003 | 0.190 & 0.004 | 0.127 + 0.002 | 0.169 £ 0.003
JP-5 fuel 0.8097 0.150 & 0.002 | 0.185 4 0.003 | 0.134 & 0.004 | 0.165 £ 0.005
Jet A fuel 0.8107 0.150 £ 0.002 | 0.185 = 0.003 | 0.137 & 0.002 | 0.168 £ 0.003
Leaded gasoline 0.7300 0.135 &£ 0.001 | 0.185 4+ 0.002 | 0.126 £ 0.003 | 0.172 + 0.004
Unleaded gasoline 0.7443 0.135 4+ 0.002 | 0.182 + 0.003 | 0.125 £ 0.002 | 0.167 + 0.003
Water 0.9974 0.194 + 0.002 | 0.194 + 0.002 | 0.165 + 0.002 | 0.166 % 0.002

TABLE IV. DATA USED FOR BOEING 737 WING TANK MODEL
Source type—Am?4! (59.5 keV); source strength—10°% counts per second;
[ source enclosure—0.01-in.-thick aluminum :
W, H, D, B, SL,
Compartment in. in. in. in. in.
1 24.0 26.8 82.0 0.0 8.2
2 24.0 24.6 78.0 1.5 8.2
3 24.0 22.6 73.0 3.0 8.2
4 24.0 20.6 68.0 4.5 8.2
5 24.0 18.6 63.0 6.0 8.2
6 24.0 16.6 58.0 7.5 8.2
7 24.0 14.6 53.0 9.0 8.2
8 24.0 13.6 49.8 10.5 8.2
9 24.0 12.7 46.5 12.0 8.2
10 240 11.8 43.2 13.5 8.2
11 24.0 10.9 39.9 15.0 8.2
12 24.0 10.0 36.6 16.5 8.2
13 24.0 9.1 33.3 18.0 8.2
14 24.0 8.2 30.0 19.5 8.2
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Appendix

Listing of Computer Programs
Program WNGTNK

DJPNPWN -

1

2

10

20

30

40
50

£0

PROGRAM WNGTNK(OUTPUT, INPUT, TAPEG=DUTPUT, TAPES=INPUT)
CPMMON/GENMTY/W(14)5H(14)50(14)5B(14)55L(14),VTAT,NC

COMMON/ANS /CTIUNTS(145101)

DIMENSION FRAC(101)

INTEGER COUNTS

DATA ERROR/1.E=5/

FNRMAT(1H1s45Xs "SUMMARY OF COUNTS?Y//777
1 5Xs'7 LIQUID?,45% s "COMPARTMENT Y/

2 18Xyt 1 1,1 2 1yt 3 ty? 4 1yt
3¢ 6 1,1 7 iyt g 1yt 9 9 10
4 v 11 0 12 ', 13 st 14 ')
FORMAT(1HO»5X5F7e292X51417)

CALL PSEUDD ’

CALL CALPLT(lesley»-3)

CALL INIT

NCM = NC = 1

NFILL = 101

READ(5,%,END=10) B

IF(EOF(5)NFE,0) 6D TO 120

ISGN = <]

V = ~0,01%VTIT

DO 100 K=1,NFILL

ISGN = -TSGN

DVDOL = 0,01*%VTOT

V = V + DVnL

FRAC(KX) = 100.*V/VTOT

7 = 0,

DO 20 I=1sNCH

7 = B{(I+1)

V1 = 0,

DO 20 J=1s1

T0P = Z

BOTTOM = B(.J)

TF{TOPLGT(B(JI) + H{J))) TOP = B(J) + H(J)

V1 = V1 ¢+ D{J)*WJ}I*(TCP = ROTTOM)

IF(V1.6T.VY GO TO 30
CONTINUYF

I = NC

CONTINUE

Jel-=1

veaT = 0,

IF(J.EQ.0) 67 TO 50
PO 40 I=1,J4

Z = B(J+1)

TOP = 1

BOTTOM = B({I)
IF(TOP BT {B(I) + H(I
VROT = VBOT + D(T1)*W(
CONTINYE

CONTINUE

g = 3 4+ 1

Z0LD = B{(J)

D7 = R{J) + D.75%HUJ)
CONTINUE

V1 = Q.

IMAX = G,

DD 70 1I=1,5J

IF({BII) + H{I))eGTL.ZMAX) ZMAX = B{I) + HI(I}

1)) TOP = B{I) + H(I)
I)*(7T0P -~ BOTTOM)



Subroutine INIT

O W/NAH N

70

80

QQ

100

110
120

ORIGINAL PAGE- IS

OF POOR QUALITY
T0P e Z0OLD
BROTTOM = B(J)
IF{TNPGT(R(I) + H(I))) TOP = B(I) + H(I)
IF(BOTTNM.GT.(B(I) + H(I))}) BOTTOM = B(I) + H(I)
Vi = V1 4 DUI)*W(I)*(TOP ~ BOTTOM)
CONTINUE
VOLUME = VBOT + V1
TSTV = v
IFIV.EQeQs) TSTV = 1,
IFLABS(VOLUME = V)/TSTV.LT.ERROR) GO TO 90
IF(VDLUME.LT.V) GD TO 80
70LD = 20LD - D?
D7 = 0.5%D7
6N 10 60
intdD = 7I0LD + D2
GO TD 60
CONTINUE
IF{ZOLD+6GTZMAX) ZOLD = ZMAX
CALL TABL(ZOLD,K)
IF(KEQ.1) CALL PICT(ZOLD)
CONTINUE
WRITE(6,s1)
DO 110 I=1,NFILL
WRITE(652) FRAC(I)» {COUNTS(K,1)y3K=l,sNC)
CONTINUE
CaLL PLTCNT
CONTINUE
CALL CALPLT{0450,5999)
STOP
END

SUBROUTINE INIT
COMMNAN/GENMTY/W(14)sH(14)5D(14)5B(16)sSL{14),VTNTSNC
NC = 14

D(1) = 82,

D(2) = 78,

ne3) = 73,

D(4) = 68,

D(5) = 63,

DI6) = 58, ,
D(T) = 53,

D{8) = 49,8

D(9) = 46,5

D(10) = 43,2
DE11) = 39.8
D(12) = 36,6
D(13) = 33.3

D(1la) = 30,
H{1) = 26,8
H{2) = 24,56
H(3) = 22,6
H(4&) = 20.6
H(5) = 18,6
H{6) = 16.6
H{7) = 1l4.6
H(B8) = 13,6
H(9) = 12,7
H{10) = 11.8
H{11) = 10.9
H{12) = 10,
H(13) = 9,1
H(14) = 8,2

VIOT = 0.



Subroutine PICT

D0 N0 W W e

10

20

10

PR 10 I=1sNC

W(I) = 24,

VTOT = VTOT + W(I)*H{(T)*D(1)
CONTINUE

NCO2 = NC/2

0N 20 I=1pNC

SL{T) = B,2

CONTINUE

RETURN
END

SUBRDUTINF PICT(Z)
COMMDN/GEDMTY/H(I#):H(14),0(14):5(14)’SL(IQ);VTUT)NC
DIMENSION XA(35)sYA(35),XB(35),YB(35)

DATA EPS/1.E~47

IND = 1

X = 0,

Y = 0,

XI = Q.

YI = 1.0%{B{NC) + H{NC))/34%,

CALL CALPLT(XI»YI,3)

XA(IND) = XI

YA(IND) = YI

IF01e%77364LToYI) YA{IND) = 1,%72734,
IF(YACIND) oLT o1 o*BINC)/34e) YALIND) = 1.%B(NC)/3%.
IND = IND + 1

DN 10 I=1,NC

X = X + W{NC+1=1)/34,

Y 8 1,0%¥(B{(NC+1-=I) ¢ H(NC+1=11))/34%.

CALL CALPLT(XsY52)

XA(IND) = X = EPS

YA{IND) = Y

IF{le%Z7340elTeY) YA{IND) = 1.,%7/34, ‘
IF(YA(IND) oL Tl e*¥B(NC+1=1)/344) YA(IND) = 1#B(NC+1-1)/34,
IND = IND + 1
IF(I «NEsNC)

1Y = 1.0%(B(NC=I) + H(NC=I))/34,

IF(I.EN.NC) Y = 0O,
CALL CALPLTI(X,Y,2)
XA{IND) = ¥ + EPS
YA{IND) = Y
IF{1e%7/34eLToY) YA(IND) = 1.%7736,
IFCYACIND) oLTole*B{NC=T3/234,) YA{IND) = 1.,%B(NC=I}/34,
IND = IND + 1
CONTINUE

CALL CALPLTIAI»YI;s3)
X = XI

Y = 1,0%B{NC}/34,
CALL CALPLT(X5Ys2)
IKD = 1

AB{IND) = X

YE(IND) = Y

IND = IND + 1

DO 20 I=1,NC

X u X + W(NC+1=1)/34,
Y = 1,0%B{NC+1=1)/34%,
CALL CALPLT{XsYs2)
XB{IND) = X = EPS
YB{IND} = Y

IND = IND + 1
IF(I.EQ.NC) 60 TO 20



Subroutine TABL

O~ O W

20

30

10

Y = 1,0%B{NC=1)734,
CALL CALPLT(X,Y52)
XB(IND) = X + EPS

YR(IND) = Y
IND = IND + 1
CONTINUE
XA(29) = O,
YR(29Q) = 0,
XA(30) = 1.
XB(30) = 1,
YA(29) = 0O,
YB{(29) = 0,
YA{30) = 1,
YB(30) = 1,
NP = 28

CALL HAFTONE(XA»YAsNP, XB,YBsNP»9)
CALL LINPLTUIXA»YA,NP»1,050,050)
XI = «~0,5%W(14)/3%,

DO 30 I=1,NC

XI = XI # W(NC=1+41)/34,

YI = 1o*(B{NC=-T+1) + SLINC-I41)}734,
CALL PNTPLTIXI»YI»2251)

CONTINUE

CALL NFRAME

CatL CALPLT(lesles=~3)

RFTURN

END

SUBRNUTINE TABL{Z5K)
COMMON/GEOMTY /W {14)sH(14)5D(14)5B(14)»SL{14},VTOT,NC
COMMON/ANS /COUNTS(14,101)
PEAL LIQSIGSLIQDEN
INTEGER COUNTS
DATA AIRSIG,AIRDEN,LIQSIG,LIQDENSsALSIGsALDEN/
1 041785040012935001505799950624852,7/
DATA STRNGT/1.E+6/
PI = ACOS{=1.)
DD 10 I=1,NC
HEIGHT = H(I)
TP = 2
IF{TOPGT. (H(I)4B(I})) TOP = H{(I} + B(I)
IF{TOP.LT.B(I}) TOP = B(I)
SLDANG = 10e%2,54/(4o*PI%(2,54%SL(1))%%2)
pLIQ = TOP - B(I}
DAIR = SL{I} - DLIQ
IF(DLINGGTLSL(I)) DLIQ = SL(I)
IF(DLIOLEQ.SL(TI)) DAIR = O,
XC = SLOANGERSTRNGYT
XC = XC#EXP(=2,54%0,01%ALSIG*ALDEN)
XC & XCHEXP(=2,54%DLIQ*LIQSIG*LIQDEN)
XC = XCHEXP(=2.54*DAIR¥AIRSIG*AIRDEN)
COUNTS(I»K) = XC
CONTINUE
RETURN
END

1
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16

Subroutine PLTCNT

10

20

30

SUBRNUTINE PLTCNT
COMMDN/GENMTY/W{14)sH{14)5D0(14),5,8(14),SL{14),VIOTHNC
COMMON/ANS/COUNTS(14,101)

DIMENSION FRAC(101}Y

INTEGER COUNTS

DIMENSION X(105)sY(105)

DO 30 J=1,NC

X(102) = 0,

¥{163) = 10.

Y{102) = 0,

Y(103) = 600,

IF(J.NE.1) GO TO 10

CALL AXES(0e920e2002104sX{(102)5X(103)51esD0ss
1 8H” LIQUID»0.,25-8)

CALL AXES(0e00059049845Y(102)5Y(103)514504>
1 AHCOUNTS,»04256)

CONTINUE

DO 20 1I=1,101

X(I) = FLOAT(I=-1)

Y{I) = COUNTS(J,I)

CONTINUE

CALL LINPLT({XsY510151505050,0)

CONTINUE

RETURN

END



5/27 (458 years )

241
95 Am
L :z%()"/ 12. 7%
a - Groups ' 0. 12%
I
9/2~ , 158.5 keV
12" i '/ / / 103. 0 keV
5127 Y 59.5 keV

(El)l/
72t * * l T 33.2 keV

R 0

237

g3 NP

Figure 1. Decay scheme for Am24 -%, Np237,

5/2* (453 days )

c d109
Electron capture (EC) 48

L
712* 87. 7keV

[(EB)
12° ] 0

109
a7 M

Figure 2. Decay scheme for Cd109 EQ Agl09,



Photomultiplier

Test fluid  / l (+) High voltage

Source

o
N
Base
lm
Pr=4
I3
o
'—-
|

Pulse analysis
and
counting system

NaI(Th
crystal

Figure 3. Schematic diagram of experimental system used for measuring attenuation coefficients of Am?4! and
Cd1% gamma rays.

(TN

IR

L1 =0.340 cm (glass)

Lo =4.982cm, 7.522 ¢cm, 10.062 cm
L3=2.540 cm (air)

Ly = 0.079 cm (aluminum)

S = Radioactive source

G-2 = Glass cell with Ly =4 982 cm
G-3 = Glass cell with L2 =1.522cm

G-4 = Glass cell with L2 = 10. 062 cm
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Figure 5. Typical spectra of Am?4! (59.5 keV) radiation source through measurement cell.
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